

© 2023 by the author

european respiratory society every breath counts

CLINICAL CASE DISCUSSION ON NEONATAL INTERSTITIAL LUNG DISEASE AND INTERSTITIAL LUNG DISEASE BEFORE 2 YEARS

ERS and ESPR Joint Webinar 20 June, 2023

Chairs: Dr Alistair Calder (London, UK), Prof. Suzanne Terheggen-Lagro (Amsterdam, Netherlands) Speakers: Dr Chiara Sileo, Prof. Nadia Nathan Paediatric Radiology unit; Paediatric pulmonology department and Reference center for rare lung diseases RespiRare Hôpital Armand-Trousseau, AP-HP Sorbonne Université Paris, France

RespiRare

Conflict of interest disclosure

W We have no real or perceived conflicts of interest that relate to this presentation.

□ I have the following real or perceived conflicts of interest that relate to this presentation:

This event is accredited for CME credits by EBAP and EACCME and speakers are required to disclose their potential conflict of interest. The intent of this disclosure is not to prevent a speaker with a conflict of interest (any significant financial relationship a speaker has with manufacturers or providers of any commercial products or services relevant to the talk) from making a presentation, but rather to provide listeners with information on which they can make their own judgments. It remains for audience members to determine whether the speaker's interests, or relationships may influence the presentation. The ERS does not view the existence of these interests or commitments as necessarily implying bias or decreasing the value of the speaker's presentation. Drug or device advertisement is forbidden.

NEONATAL RESPIRATORY DISTRESS

3 - 4% of newborns

Frequent causes

- Transient respiratory distress
- Maternofetal infection
- Meconium aspiration
- Effusion (pneumothorax, pneumomediastinum, chylothorax)

NEONATAL RESPIRATORY DISTRESS

Rare causes

3 - 4% of newborns

Frequent causes

- Transient respiratory distress
- Maternofetal infection
- Meconium aspiration
- Effusion (pneumothorax, pneumomediastinum, chylothorax)

- Cardiovascular disorders
 - Congenital heart malformation
 - Delayed decrease of pulmonary pressions
- Lung disorders
 - Malformations
 - Congenital diaphragmatic hernia
 - Esophageal atresia
 - Congenital pulmonary airway malformation
 - Others
 - Interstitial lung diseases (ILD)
 - Primitive ciliary dyskinesia / Cystic fibrosis
 - Diffuse developmental disorders of the lung
- ENR: choanal atresia, other malformations

Neuromuscular disorders

NEONATAL RESPIRATORY DISTRESS

Rare causes

3 - 4% of newborns

Frequent causes

- Transient respiratory distress
- Maternofetal infection
- Meconium aspiration
- Effusion (pneumothorax, pneumomediastinum, chylothorax)

- Cardiovascular disorders
 - Congenital heart malformation
 - Delayed decrease of pulmonary pressions
- Lung disorders
 - Malformations
 - Congenital diaphragmatic hernia
 - Esophageal atresia
 - Congenital pulmonary airway malformation
 - Others
 - Interstitial lung diseases (ILD)
 - Primitive ciliary dyskinesia / Cystic fibrosis
 - Diffuse developmental disorders of the lung
- ENR: choanal atresia, other malformations

Neuromuscular disorders

- Consanguineous parents from Afghanistan
- Normal pregnancy
- Full-term neonate 39 WG
- Normal birth weight
- Neonatal respiratory distress (H8)
- Signs of respiratory distress
- Hypoxaemia requiring oxygen support and NIV
- Pulmonary hypertension (PHT)
- Transfer to the intensive care unit

european respiratory society every breath counts

- No infection
- No malformation
- No extra-respiratory disorder
- **High Resolution Computed** Tomography (HRCT) at 25 days

nts

Neonatal interstitial lung disease: which one? (MCQ)

- A. Chlamydia trachomatis infection
- B. Surfactant protein B deficiency
- C. Alveolar haemorrage
- D. Alveolar capillary dysplasia
- E. ABCA3 deficiency

Neonatal interstitial lung disease: which one? (MCQ)

- A. Chlamydia trachomatis infection
- B. Surfactant protein B deficiency
- C. Alveolar haemorrage
- D. Alveolar capillary dysplasia
- E. ABCA3 deficiency

ILD related to exposure/environment insults	ILD related to systemic diseases processes	ILD related to lung primary parenchyma dysfunctions	ILD specific to infancy
Hypersensitivity pneumonitis	Connective tissue diseases	Surfactant disorders	Neuroendocrine cell hyperplasia of infancy
Medication, Drugs Radiation exposure	Vasculitis	Diffuse alveolar hemorrhages	Pulmonary interstitial glycogenosis
	Granulomatous disorders	Eosinophilic lung diseases	Diffuse developmental disorders
	Metabolic disorders	Lymphatic disorders	
		Viral infections	

ILD related to exposure/environment insults	ILD related to systemic diseases processes	ILD related to lung primary parenchyma dysfunctions	ILD specific to infancy	
Hypersensitivit y pn eumonitis	Connective tissue diseases	Surfactant disorders	Neuroendocrine cell hyperplasia of infancy	
Medication, Drugs R adiat ion exposure	Vasculitis	Diffuse alveolar hemorrhages	Pulmonary interstitial glycogenosis	
	Granulomatous disorders	Eosinophilic lung diseases	Diffuse developmental disorders	
	Metabolic disorders	Lymphatic disorders Viral infections		

Pros : Consanguinity Cons : Neonatal onset No hepatomegaly No splenomegaly No hypotonia

Nathan et al. Expert Rev Respir Med 2018 Chronic interstitial lung diseases in children: diagnosis approaches

european respiratory society every breath counts

ILD related to systemic diseases processes	ILD related to lung primary parenchyma dysfunctions	ILD specific to infancy
Connective tissue diseases	Surfactant disorders	Neuroendocrine cell hyperplasia of infancy
Vasculitis	Diffuse alveolar hemorrhages	Pulmonary interstitial glycogenosis
Granulomatous disorders	Eosinophilic lung diseases	Diffuse developmental disorders
Metabolic disorders	Lymphatic diso rders Viral infections	
	ILD related to systemic diseases Connective tissue diseases Vasculitis Granulomatous disorders Metabolic disorders	ILD related to systemic diseases processesILD related to lung primary parenchyma dysfunctionsConnective tissue diseasesSurfactant disordersVasculitisDiffuse alveolar hemorrhagesGranulomatous disordersEosinophilic lung diseasesMetabolic disordersLymphatic disorders Viral infections

Pros : Consanguinity Cons : Neonatal onset No hepatomegaly No splenomegaly No hypotonia	Pros: Consanguinity (SP-B, ABCA3) Neonatal onset No extra-respiratory disorder CT pattern PHT Cons:	
---	--	--

ILD related to exposure/environment insults	ILD related to systemic diseases processes	ILD related to lung prin parenchyma dysfunct	mary ILD specific to infancy ions
Hypersensitivity pneumonitis	Connective tissue diseases	Surfactant disorders	Neuroendocrine cell hyperplasia of infancy
Medication, Drugs Radiation exposure	Vasculitis	Diffuse alveolar hemorrh	ages Pulmonary interstitial glycogenosis
	Granulomatous disorders Eos		s Diffuse developmental disorders
	Metabolic disorders	Lymphatic disorders Viral infections	
	Pros: Consanguinit	y (SP-B, ABCA3)	os: Neonatal onset
Cons : Neonatal onset	Neonatal ons No extra-resp	et Co piratory disorder	ons: No congenital heart disease
No nepatomegaly No splenomegaly No hypotonia	CT pattern PHT	Pr	ros: Neonatal onset PHT
··	Cons:	eu	ons: No extra-respiratory disorder CT pattern

Diagnostic workup in chILD

Diagnostic workup in chILD

CASE 1 (M.)

Treatment and follow-up

- IV corticosteroid pulses
- Azithromycin
- Hydroxychloroquine
- NIV => oxygen support
- Enteral nutrition
- Immunizations

14 months

europ

CASE 1 (M.)

Treatment and follow-up

- IV corticosteroid pulses ... 84
- Azithromycin ... ongoing
- Hydroxychloroquine ... stop because of retinitis
- NIV => oxygen support ... ongoing + NIV 20h/24
- Enteral nutrition ... ongoing
- Immunizations
- Waiting list for lung transplantation at 4 years and 9 months (duration 1 year and 5 months)
- Death at 6 years and 2 months (O neg)

6 years

Surfactant disorders

- 4 surfactant proteins
- SP-A, SP-B, SP-C, SP-D Genes SFTPA1, SFTPA2, SFTPB, SFTPC, SFTPB
- Transporter into lamellar bodies: ABCA3

Transcription factor: NKX2.1

Most severe forms: SP-B and ABCA3 mutations

ABCA3 (ABCA3) mutations: typical forms

- Phospholipid transporter, ATP binding cassette family
- Inheritence: recessive
- Phenotype:
 - Neonatal or infant respiratory distress
 - Failure to thrive
 - Evolution towards death or severe ILD with fibrosis

3 months

15 years

Doan ML et al. Thorax 2008 Whitsett et al. Annu Rev Med. 2010 european respiratory society every breath counts

ABCA3 (ABCA3) mutations: typical forms

Adult evolution and/or adult onset Lung fibrosis in adults: « combined emphysema and fibrosis »

Manali et al. ERJ open research 2019 european respiratory society every breath counts

ABCA3 (ABCA3) mutations: typical forms

- Enlarged alveolar walls
- Alveolar epithelial cells hyperplasia
- Alveolar proteinosis EM: dense inclusions in abnormal and small lamellar bodies

Control

ABCA3 mutant

Control

ABCA3 mutant

Gower et al. *J pediatr* 2010 Flamein et al. *Hum Mol Genetics* 2011 Shulenin et al. NEJM 2004

SP-B (SFTPB) mutations

Typical form

- Transmission : recessive
- Phenotype :
 - Severe neonatal respiratory distress
 - Pulmonary hypertension
 - Refractory hypoxemia
 - Lethal prognosis

Nogee et al.NEJM 1994 Doan ML et al. Thorax 2008 Images: Radiology department, Trousseau hospital

SP-B (SFTPB) mutations

- Alveolar proteinosis
- Thick and stiff alveolar walls
- AEC2 hyperplasia

SFTPB mutant Vanishing lamellar bodies

SFTPB WT

Nogee et al. NEJM 1994 Wert et al. Ped and Dev Pathology 2010

TTF1 (NKX2.1) mutations

Transcription factor for

- Brain
- Thyroid (thyroglobulin) Lungs (SP-B, SP-C, ABCA3)

Typical forms

16 months

Jovien S et al. Respiration 2016 Nattes et al. Respir Med 2017

- Heterogeneous from birth to adulthood ٠ presentation
- Transmission : dominant
- Phenotype : "brain-lung-thyroid" syndrome ٠ with various degrees of
 - Hypotonia / Benign chorea
 - ILD / lung fibrosis
 - Hypothyroidism

Neonatal respiratory distress When to suspect a surfactant disorder?

- Term newborn
- Consanguinity (SP-B, ABCA3)
- No extra-respiratory disease (SP-B, ABCA3)
- OR peripheral hypothyroidism / hypotonia (NKX2.1)
- Moderate to severe PHT
- Diffuse GGO
- Transient efficacy of exogeneous surfactant

- First child
- Unremarkable pregnancy
- No consanguinity
- Full-term newborn
- Immediate NRD
- Severe PHT
- Refractory hypoxaemia => ECMO
- Duodenal atresia

HRCT at 14 days

european respiratory society every breath counts

Neonatal interstitial lung disease: which one? (MCQ)

- A. Ureaplasma uralyticum infection
- B. Brain-lung-thyroid syndrome (NKX2.1)
- C. Pulmonary interstitial glycogenosis
- D. Alveolar capillary dysplasia
- E. Acinar dysplasia

Neonatal interstitial lung disease: which one? (MCQ)

- A. Ureaplasma uralyticum infection
- B. Brain-lung-thyroid syndrome (NKX2.1)
- C. Pulmonary interstitial glycogenosis
- D. Alveolar capillary dysplasia
- E. Acinar dysplasia

ILD related to exposure/environment insults	ILD related to systemic diseases processes	ILD related to lung primary parenchyma dysfunctions	ILD specific to infancy
Hypersensitivity pneumonitis	Connective tissue diseases	Surfactant disorders	Neuroendocrine cell hyperplasia of infancy
Medication, Drugs Radiation exposure	Vasculitis	Diffuse alveolar hemorrhages	Pulmonary interstitial glycogenosis
	Granulomatous disorders	Eosinophilic lung diseases	Diffuse developmental disorders
	Metabolic disorders	Lymphatic disorders	
		Viral infections	

ILD related to exposure/environment insults	ILD related to systemic diseases processes	ILD related to lung primary parenchyma dysfunctions	ILD specific to infancy
Hypersensitivit y pne umonitis	Connective tissue diseases	Surfactant disorders	Neuroendocrine cell hyperplasia of infancy
Medication, Drugs	Vasculitis	Diffuse alveolar hemorrhages	Pulmonary interstitial glycogenosis
	Granulomatous disorders	Eosinophilic lung diseases	Diffuse developmental disorders
	Metabolic disorders	Lymphatic disorders Viral infections	

ILD related to exposure/environment insults	ILD related to systemic diseases processes	ILD related to lung primary parenchyma dysfunctions	ILD specific to infancy	
Hypersensitivity pneumonitis	Connective tissue diseases	Surfactant disorders	Neuroendocrine cell hyperplasia of infancy	
Medication, Drugs	Vasculitis	Diffuse alveolar hemorrhages	Pulmonary interstitial glycogenosis	
Radiation exposure				
	Granulomatous disorders	Eosinophilic lung diseases	Diffuse developmental disorders	
	Metabolic disorders	Lymphatic disorders		
		Viral infections		

Pros:	Neonatal onset	Pros:	Neonatal onset	Pros:	Neonatal onset
Cons:	No consanguinity (SP-B, ABCA3) No hypothyroidism Severe PHT	Cons:	No congenital heart disease		Severe PHT Sub-normal CT-scan Digestive extra-respiratory disorder
	CT pattern Extra-respiratory disorder		eur	Cons:	spiratory society every breath counts

Which investigation could confirm the diagnosis? (MCQ)

- A. Lung biopsy
- B. Caryotype
- C. Bronchoalveolar lavage
- D. Echocardiography
- E. NGS molecular testing

Which investigation could confirm the diagnosis? (MCQ)

- A. Lung biopsy
- B. Caryotype
- C. Bronchoalveolar lavage
- D. Echocardiography
- E. NGS molecular testing

Diagnostic workup in chILD

Diagnostic workup in chILD

CASE 2 (L.) Alveolar capillary dysplasia (with misalignment of pulmonary veins)

Diffuse developmental disorder

Vascular and alveolar abnormalities, poor capillary bed Abnormal localization of pulmonary veins in the broncho-arterial axix, thickened alveolar walls

Typical forms

- Full-term newborn
- Severe PHT (90%) with refractory hypoxemia (60%)
- Extra-exrespiratory malformations (50-80%)
 - Heart
 - Intestine (rotation abnormalities ++)
 - Uro-genitary
- Evolution: Most cases are fatal

Bishop NB et al. *Am J Respir Crit Care Med*. 2011 Slot E et al. *Pulm Circ.* 2018 Szafranski P et al. *Am J Hum Genet*. 2014 Pasutto F et al. *Am J Hum Genet*. 2007

CASE 2 (L.) Alveolar capillary dysplasia (with misalignment of pulmonary veins)

Ito et al. *Eur J Pediatr*. 2015 Szafranski P et al. *Am J Hum Genet*. 2014 *Radiology department, Trousseau* hospital

Other developmental disorders of the lung

Image: Pr. Megan Dishop

Acinar dysplasia

Early arrest of development at the pseudoglandular stage

- Airways present but no alveolus
- Low developed capillary bed

6F/1M

Extra-respiratory disorders: renal dysplasia, right aorta arch, cerebral and adrenal bleedings or calcifications

Syndromic acinar dysplasia

TBX4: Small patella syndrome + acinar dysplasia

- Bone malformations, mainly hips, legs, feets
- Heterogeneous acinar dysplasia with PHT at the forefront

FGFR2: Ectrodactily + acinar dysplasia

- Only one report
- Neonatal severe PHT

Szafranski P et al. *Am J Med Genet*. 2016 Kerstjens-Frederikse WS et al. *J Med Genet*. 2013

Barnett CP et al. Hum Mutat. 2016

ERS Neonatal respiratory distress When to suspect a diffuse developmental disorder of the lung?

- Term newborn
- Severe PHT
- Extra-respiratory malformations
- No impact of exogeneous surfactant
- Sub-normal / heterogeneous CT-scan

CASE 3 (A.)

- First child
- Unremarkable pregnancy
- Consanguinity
- Full-term newborn
- Immediate moderate NRD
- No PHT

What can you describe on the chest X-ray? (MCQ)

- A. The chest x-ray is in oblique projection
- B. Thicken bronchial walls with alveolar opacities
- C. Cardiomegaly
- D. Enlarged thymus
- E. Interstitial opacities

What can you describe on the chest X-ray? (MCQ)

- A. The chest x-ray is in oblique projection
- B. Thicken bronchial walls with alveolar opacities
- C. Cardiomegaly
- D. Enlarged thymus
- E. Interstitial opacities

- Situs inversus
- Neonatal rhinitis
- \Rightarrow PCD suspicion
- \Rightarrow Genetic test
- \Rightarrow Nasal/bronchial biopsy for ciliary EM

Lucas JS, et al. Eur Respir J. 2017

Neonatal respiratory distress When to suspect an ILD differential dagnosis?

- Primary ciliary dyskinesia?
 - Consanguinity
- Cystic fibrosis?
 - Consanguinity

- Congenital heart disease?
 - Cardiomegaly

- Neonatal rhinitis
- Meconial ileus

- Signs of cardiac insufficiency

Situs inversus

CASE 4 (S.)

- 2nd child, full-term newborn, no neonatal respiratory distress
- Well being until 4 months
- No severe infection
- Persistent tachypnea observed since the age of 4 months
 - Retractions
 - Persitent crackles
 - Pectus excavatum
 - Oxygen therapy at 4 months
- Growth impairement requiring enteral nutrition at 7 months
- Biology: No abnormality

european respiratory society every breath counts

CASE 4 (S.) Radiologic diagnosis

european respiratory society every breath counts

Childhood interstitial lung disease: which one? (MCQ)

- A. Immune deficiency (oportunistic infection)
- B. Brain-lung-thyroid syndrome (NKX2.1)
- C. Neuroendocrine cell hyperplasia of infancy
- D. SP-C disorder
- E. Alveolar haemorrhage

Childhood interstitial lung disease: which one? (MCQ)

- A. Immune deficiency (oportunistic infection)
- B. Brain-lung-thyroid syndrome (NKX2.1)
- C. Neuroendocrine cell hyperplasia of infancy
- D. SP-C disorder
- E. Alveolar haemorrhage

2010 & 2018 childhood ILD (chILD) classification

ILD related to exposure/environment insults	ILD related to systemic diseases processes	ILD related to lung primary parenchyma dysfunctions	ILD specific to infancy
Hypersensitivit y pne umonitis	Connective tissue diseases	Surfactant disorders	Neuroendocrine cell hyperplasia of infancy
Medication, Drugs Radiation exposure	Vasculitis	Diffuse alveolar hemorrhages	Pulmonary interstitial glycogenosis
	Granulomatous disorders	Eosinophilic lung diseases	Diffuse developmental disorders
	Metabolic disorders	Lymphatic disorders	
		Viral infections	

Pros: Always possible .	SP-C? NKX2.1?	: s: Delayed onset	Pros:	Age at onset CT pattern
Cons: No consanguinity No hypothyroidis CT pattern	r (SP-B, ABCA3) m, no hypotonia	No PHT CT pattern No extra-respiratory disorder	« well-being child » Liptzin score	« well-being child » Liptzin score

Liptzin score for NEHI / PTI

NEHI score (0 to 10)	
Criteria	Present = 1, Absent = 0
Onset before 12 months	
Failure to thrive	
No clubbing	
No basline cough	
No baseline wheezing	
Chest wall abnormality (ex: pectus excavatum)	
Crackles	
Hypoxemia	
Tachypnea	
Retractions	
TOTAL (≥7 highly suggestive of NEHI)	

Liptzin D et al. Ann ATS 2020

ERS Liptzin score for neuroendocrine cell hyperplasia of infancy (NEHI) / persistent tachypnea of infancy (PTI)

NEHI score (0 to 10)	
Criteria	Present = 1, Absent = 0
Onset before 12 months	1
Failure to thrive	1
No clubbing	1
No basline cough	1
No baseline wheezing	1
Chest wall abnormality (ex: pectus excavatum)	1
Crackles	1
Hypoxemia	1
Tachypnea	1
Retractions	1
TOTAL (≥7 highly suggestive of NEHI)	10

Another patient same diagnosis

3 months

Diagnostic workup in chILD

PTI / NEHI

- NEHI: high number of NE cells in the distal bronchioles
- Diagnosis: lung biopsy with bombesin staining
- IV corticosteroid pulses (or no treatment?)
- Evolution: good!
 - Weaned from oxygen at 2,5 years
 - Weaned from EN at 3 years

Devaux et al. Eur J Ped 2022 Fabre et al. Eur J Ped 2022

PTI / NEHI: a genetic cause?

3 ans

26 ans

Young et al. Chest 2013 Nevel et al. Ann Am Thorac Soc 2016 Jiramethee et al. Case Rep Pulmonol 2017

ILD in childhood When to suspect a NEHI?

- Liptzin score + CT-scan pattern
- Negative genetic tests for surfactant genes

CASE 5 (J.)

- 2nd child, full-term newborn, no neonatal respiratory distress
- Well being until 18 months ... BUT growth impairement since the age of 7 months
- RSV bronchiolitis at 18 months with oxygen requirement ... persisting with crackles and unusual chest X-ray

CASE 5 (J.)

18 months

european respiratory society every breath counts

Childhood interstitial lung disease: which one? (MCQ)

- A. Immune deficiency (oportunistic infection)
- B. Brain-lung-thyroid syndrome (NKX2.1)
- C. Neuroendocrine cell hyperplasia of infancy
- D. SP-C disorder
- E. Alveolar haemorrhage

Childhood interstitial lung disease: which one? (MCQ)

- A. Immune deficiency (oportunistic infection)
- B. Brain-lung-thyroid syndrome (NKX2.1)
- C. Neuroendocrine cell hyperplasia of infancy
- D. SP-C disorder
- E. Alveolar haemorrhage

Diagnostic workup in chILD

Nathan et al. Eur Respir Rev 2023

CASE 5 (J.): Evolution

- Oxygen therapy for 2 years
- No enteral nutrition
- IV methylprednisolone pulses ... 10
- Azithromycin ... still
- Hydroxychloroquine ... still

Stable over time with preserved activities Meals are still an issue

Current lung function: FVC 43%, DLCO 44%

CASE 5 (J.)

18 months

10 years

european respiratory society every breath counts

SP-C (SFTPC) Mutations

Typical forms

- **Transmission**: Dominant inheritance
- Phenotype:
 - Neonatal or infant respiratory distress, often following a viral infection
 - Failure to thrive
 - Evolution towards severe fibrosing ILD

Doan ML et al. Thorax 2008 Whitsett et al. Annu Rev Med. 2010 european respiratory society every breath counts

ILD in childhood When to suspect a SP-C disorder?

- Phenotypic heterogeneity
- Early onset
- Following a viral infection
- Diffuse GGO on CT-scan

Take home messages

chILD diagnostic assessment based on CT-scan pattern before 2 years

Diffuse and dense GGO	
Diffuse and \pm dense GGO peripheral and/or parenchymal traction cysts, traction bronchiectasis, reticulations	
Paramediastinal, paracardial, middle lobe, lingula GGO	
Sub-normal	

Take home messages

chILD diagnostic assessment based on CT-scan pattern before 2 years

Diffuse and dense GGO	Surfactant disorder
Diffuse and \pm dense GGO peripheral and/or parenchymal traction cysts, traction bronchiectasis, reticulations	
Paramediastinal, paracardial, middle lobe, lingula GGO	
Sub-normal	

Take home messages

chILD diagnostic assessment based on CT-scan pattern before 2 years

Diffuse and dense GGO	Surfactant disorder
Diffuse and ± dense GGO peripheral and/or parenchymal traction cysts, traction bronchiectasis, reticulations	Surfactant disorder
Paramediastinal, paracardial, middle lobe, lingula GGO	
Sub-normal	

Take home messages

chILD diagnostic assessment based on CT-scan pattern before 2 years

Diffuse and dense GGO	Surfactant disorder
Diffuse and ± dense GGO peripheral and/or parenchymal traction cysts, traction bronchiectasis, reticulations	Surfactant disorder
Paramediastinal, paracardial, middle lobe, lingula GGO	NEHI, PTI
Sub-normal	

Take home messages

chILD diagnostic assessment based on CT-scan pattern before 2 years

Diffuse and dense GGO	Surfactant disorder
Diffuse and \pm dense GGO peripheral and/or parenchymal traction cysts, traction bronchiectasis, reticulations	Surfactant disorder
Paramediastinal, paracardial, middle lobe, lingula GGO	NEHI, PTI
Sub-normal	Diffuse developmental disorder of the lung

Take home messages

Stepwise approach to chILD diagnosis

Nathan et al. Eur Respir Rev 2023

Undefined ILD

Interstitial Lung Diseases (ILDs)

Surfactant disorders and inheritance

https://respifil.fr/maladies/livretsinformation-patients/

european respiratory society every breath counts

e-learning on thoracic CT-scan in chILD

CRC CHILD European Respiratory Society Clinical Research Collaboration Children's Interstitial Lung Disease

- Alistair Calder (UK), Chiara Sileo (FR), Nadia Nathan (FR)
- Funded by the French RespiRare network (15,000€)
- Open access, free, with certificate of completion
- Online at the end of 2023

Children's Interstitial Lung Disease CT Interpretation Guide

Module 1: An introduction to CT techniques in children's lung disease

Children's Interstitial Lung Disease CT Interpretation Guide

Module 2: Anatomical, pathological and developmental basis for CT signs in ChILD

A case to be discussed? Multidisciplinary team meetings: <u>www.Respifil.Fr</u> or <u>nadia.nathan@aphp.fr</u>, <u>chiara.sileo@aphp.fr</u>

Pediatric pulmonology department Trousseau Hospital, Sorbonne University

Harriet Corvol **Guillaume Aubertin** Lauren Bitton Victorine Boccard Annick Clement Sophie Denamur Audrey Dupond-Athenor **Blandine Prevost** Mickaël Shum Aline Tamalet **Jessica Taytard Guillaume Thouvenin Corinne Troadec**

Imaging department

Hubert Ducou le Pointe, Chiara Sileo

Laboratory of childhood genetic diseases Inserm UMR S933

> Serge Amselem Camille Louvrier Tifenn Desroziers Yohan Soreze Sonia Karabina

LABORATORY OF CHILDHOOD GENETIC DISEAS

